EQUIVALENCES OF BIRCH AND SWINNERTON-DYER CONJECTURES OVER NON-ABELIAN EXTENSIONS OF ORDER 27

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler Systems and Refined Conjectures of Birch Swinnerton-Dyer Type

The relationship between arithmetic objects (such as global fields, or varieties over global fields) and the analytic properties of their Lfunctions poses many deep and difficult questions. The theme of this paper is the Birch and Swinnerton Dyer conjecture, and certain refinements that were proposed by Mazur and Tate. We will formulate analogues of these conjectures over imaginary quadratic fi...

متن کامل

The Birch-swinnerton-dyer Conjecture

We give a brief description of the Birch-Swinnerton-Dyer conjecture which is one of the seven Clay problems.

متن کامل

The conjecture of Birch and Swinnerton-Dyer

This essay starts by first explaining, for elliptic curves defined over Q, the statement of the conjecture of Birch and Swinnerton-Dyer. Alongside, it contains a discussion of some results that have been proved in the direction of the conjecture, such as the theorem of Kolyvagin-Gross-Zagier and the weak parity theorem of Tim and Vladimir Dokchitser. The second, third and fourth part of the ess...

متن کامل

The Birch and Swinnerton-Dyer Conjecture for Abelian Varieties over Number Fields

1 Algebraic Groups 7 1.1 Group Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Restriction of Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Algebraic Groups over a Nonalgebraically Closed Field K . . . . . . . . . . . 13 1.4 Structure of Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Topologizing G(R...

متن کامل

The Birch and Swinnerton-Dyer Conjecture

A polynomial relation f(x, y) = 0 in two variables defines a curve C. If the coefficients of the polynomial are rational numbers then one can ask for solutions of the equation f(x, y) = 0 with x, y ∈ Q, in other words for rational points on the curve. If we consider a non-singular projective model C of the curve then over C it is classified by its genus. Mordell conjectured, and in 1983 Falting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2008

ISSN: 1225-293X

DOI: 10.5831/hmj.2008.30.1.047